Death-effector Filaments: Novel Cytoplasmic Structures that Recruit Caspases and Trigger Apoptosis

نویسندگان

  • Richard M. Siegel
  • David A. Martin
  • Lixin Zheng
  • Samuel Y. Ng
  • John Bertin
  • Jeffrey Cohen
  • Michael J. Lenardo
چکیده

The death-effector domain (DED) is a critical protein interaction domain that recruits caspases into complexes with members of the TNF-receptor superfamily. Apoptosis can also be induced by expressing certain DED-containing proteins without surface receptor cross-linking. Using Green Fluorescent Protein to examine DED-containing proteins in living cells, we show that these proteins cause apoptosis by forming novel cytoplasmic filaments that recruit and activate pro-caspase zymogens. Formation of these filaments, which we term death-effector filaments, was blocked by coexpression of viral antiapoptotic DED-containing proteins, but not by bcl-2 family proteins. Thus, formation of death-effector filaments allows a regulated intracellular assembly of apoptosis-signaling complexes that can initiate or amplify apoptotic stimuli independently of receptors at the plasma membrane.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DEDD regulates degradation of intermediate filaments during apoptosis

Apoptosis depends critically on regulated cytoskeletal reorganization events in a cell. We demonstrate that death effector domain containing DNA binding protein (DEDD), a highly conserved and ubiquitous death effector domain containing protein, exists predominantly as mono- or diubiquitinated, and that diubiquitinated DEDD interacts with both the K8/18 intermediate filament network and pro-casp...

متن کامل

Structural mechanisms of inflammasome assembly.

Inflammasomes are supramolecular signaling complexes that activate a subset of caspases known as the inflammatory caspases, an example of which is caspase 1. Upon stimulation by microbial and damage-associated signals, inflammasomes assemble to elicit the first line of host defense via the proteolytic maturation of cytokines interleukin-1β and interleukin-18, and by induction of pyroptotic cell...

متن کامل

E4orf4, a Novel Adenovirus Death Factor That Induces p53-independent Apoptosis by a Pathway That Is Not Inhibited by zVAD-fmk

In the absence of E1B, the 289-amino acid product of human adenovirus type 5 13S E1A induces p53-independent apoptosis by a mechanism that requires viral E4 gene products (Marcellus, R.C., J.C. Teodoro, T. Wu, D.E. Brough, G. Ketner, G.C. Shore, and P.E. Branton. 1996. J. Virol. 70:6207-6215) and involves a mechanism that includes activation of caspases (Boulakia, C.A., G. Chen, F.W. Ng, J. G. ...

متن کامل

Atlas of Genetics and Cytogenetics in Oncology and Haematology

Background on apoptosis Cell death can be achieved by two fundamentally different mechanisms, apoptosis and necrosis. Apoptosis is characterized by several morphological features that include condensation of nuclei and internucleosomal degradation of DNA, cell membrane blebbing, and formation of apoptotic bodies. By contrast, necrosis is recognized by swelling of the cell and organelles, follow...

متن کامل

Messengers of cell death: apoptotic signaling in health and disease.

BACKGROUND AND OBJECTIVES Apoptosis is a genetically controlled mechanism of cell death involved in the regulation of tissue homeostasis. Understanding the molecular basis of apoptosis signaling may reveal novel clues for lymphomagenesis. EVIDENCE AND INFORMATION SOURCES Pro-apoptotic signaling is mediated by specific ligands and surface death receptors (extrinsic pathway of apoptosis regulat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 141  شماره 

صفحات  -

تاریخ انتشار 1998